• 分面搜索
最后更新于
最后更新于
分面搜索对于现代搜索应用程序来说,与自动完成、拼写校正和搜索关键词高亮显示同样重要,尤其是在电子商务产品中。
当处理大量数据和各种相互关联的属性(如尺寸、颜色、制造商或其他因素)时,分面搜索非常有用。查询大量数据时,搜索结果往往包含许多不符合用户预期的条目。分面搜索使终端用户能够明确定义他们希望搜索结果满足的条件。
在 Manticore Search 中,有一种优化机制,它保持原始查询的结果集,并在每次计算分面时重新使用它。由于聚合应用于已计算的文档子集,因此它们的速度很快,总执行时间通常仅比初始查询稍长。可以将分面添加到任何查询中,分面可以是任何属性或表达式。分面结果包括分面值和分面计数。可以通过在查询的最后声明分面,在 SQL SELECT
语句中访问分面。
分面值可以来源于属性、JSON 属性内的 JSON 属性或表达式。分面值也可以使用别名,但别名必须在所有结果集(主查询结果集和其他分面结果集)中唯一。分面值是从聚合的属性或表达式中得出的,但也可以来自其他属性或表达式。
FACET {expr_list} [BY {expr_list} ] [DISTINCT {field_name}] [ORDER BY {expr | FACET()} {ASC | DESC}] [LIMIT [offset,] count]
多个分面声明必须用空格分隔。
可以在 aggs
节点中定义分面:
"aggs" :
{
"group name" :
{
"terms" :
{
"field":"attribute name",
"size": 1000
}
"sort": [ {"attribute name": { "order":"asc" }} ]
}
}
其中:
group name
是分配给聚合的别名
field
值必须包含正在进行分面的属性或表达式的名称
可选的 size
指定结果中包含的最大桶数。如果未指定,则继承主查询的限制。更多详细信息可以在 分面结果大小 部分找到。
可选的 sort
指定属性和/或附加属性数组,语法与主查询中的 "sort" 参数相同。
结果集将包含一个带有返回分面的 aggregations
节点,其中 key
是聚合值,doc_count
是聚合计数。
"aggregations": {
"group name": {
"buckets": [
{
"key": 10,
"doc_count": 1019
},
{
"key": 9,
"doc_count": 954
},
{
"key": 8,
"doc_count": 1021
},
{
"key": 7,
"doc_count": 1011
},
{
"key": 6,
"doc_count": 997
}
]
}
}
SQL:
SELECT *, price AS aprice FROM facetdemo LIMIT 10 FACET price LIMIT 10 FACET brand_id LIMIT 5;
+------+-------+----------+---------------------+------------+-------------+---------------------------------------+------------+--------+
| id | price | brand_id | title | brand_name | property | j | categories | aprice |
+------+-------+----------+---------------------+------------+-------------+---------------------------------------+------------+--------+
| 1 | 306 | 1 | Product Ten Three | Brand One | Six_Ten | {"prop1":66,"prop2":91,"prop3":"One"} | 10,11 | 306 |
| 2 | 400 | 10 | Product Three One | Brand Ten | Four_Three | {"prop1":69,"prop2":19,"prop3":"One"} | 13,14 | 400 |
...
| 9 | 560 | 6 | Product Two Five | Brand Six | Eight_Two | {"prop1":90,"prop2":84,"prop3":"One"} | 13,14 | 560 |
| 10 | 229 | 9 | Product Three Eight | Brand Nine | Seven_Three | {"prop1":84,"prop2":39,"prop3":"One"} | 12,13 | 229 |
+------+-------+----------+---------------------+------------+-------------+---------------------------------------+------------+--------+
10 rows in set (0.00 sec)
+-------+----------+
| price | count(*) |
+-------+----------+
| 306 | 7 |
| 400 | 13 |
...
| 229 | 9 |
| 595 | 10 |
+-------+----------+
10 rows in set (0.00 sec)
+----------+----------+
| brand_id | count(*) |
+----------+----------+
| 1 | 1013 |
| 10 | 998 |
| 5 | 1007 |
| 8 | 1033 |
| 7 | 965 |
+----------+----------+
5 rows in set (0.00 sec)
JSON:
POST /search -d '
{
"index" : "facetdemo",
"query" : {"match_all" : {} },
"limit": 5,
"aggs" :
{
"group_property" :
{
"terms" :
{
"field":"price"
}
},
"group_brand_id" :
{
"terms" :
{
"field":"brand_id"
}
}
}
}
'
{
"took": 3,
"timed_out": false,
"hits": {
"total": 10000,
"hits": [
{
"_id": 1,
"_score": 1,
"_source": {
"price": 197,
"brand_id": 10,
"brand_name": "Brand Ten",
"categories": [
10
]
}
},
...
{
"_id": 5,
"_score": 1,
"_source": {
"price": 805,
"brand_id": 7,
"brand_name": "Brand Seven",
"categories": [
11,
12,
13
]
}
}
]
},
"aggregations": {
"group_property": {
"buckets": [
{
"key": 1000,
"doc_count": 11
},
{
"key": 999,
"doc_count": 12
},
...
{
"key": 991,
"doc_count": 7
}
]
},
"group_brand_id": {
"buckets": [
{
"key": 10,
"doc_count": 1019
},
{
"key": 9,
"doc_count": 954
},
{
"key": 8,
"doc_count": 1021
},
{
"key": 7,
"doc_count": 1011
},
{
"key": 6,
"doc_count": 997
}
]
}
}
}
PHP:
$index->setName('facetdemo');
$search = $index->search('');
$search->limit(5);
$search->facet('price','price');
$search->facet('brand_id','group_brand_id');
$results = $search->get();
Array
(
[price] => Array
(
[buckets] => Array
(
[0] => Array
(
[key] => 1000
[doc_count] => 11
)
[1] => Array
(
[key] => 999
[doc_count] => 12
)
[2] => Array
(
[key] => 998
[doc_count] => 7
)
[3] => Array
(
[key] => 997
[doc_count] => 14
)
[4] => Array
(
[key] => 996
[doc_count] => 8
)
)
)
[group_brand_id] => Array
(
[buckets] => Array
(
[0] => Array
(
[key] => 10
[doc_count] => 1019
)
[1] => Array
(
[key] => 9
[doc_count] => 954
)
[2] => Array
(
[key] => 8
[doc_count] => 1021
)
[3] => Array
(
[key] => 7
[doc_count] => 1011
)
[4] => Array
(
[key] => 6
[doc_count] => 997
)
)
)
)
Python:
res =searchApi.search({"index":"facetdemo","query":{"match_all":{}},"limit":5,"aggs":{"group_property":{"terms":{"field":"price",}},"group_brand_id":{"terms":{"field":"brand_id"}}}})
{'aggregations': {u'group_brand_id': {u'buckets': [{u'doc_count': 1019,
u'key': 10},
{u'doc_count': 954,
u'key': 9},
{u'doc_count': 1021,
u'key': 8},
{u'doc_count': 1011,
u'key': 7},
{u'doc_count': 997,
u'key': 6}]},
u'group_property': {u'buckets': [{u'doc_count': 11,
u'key': 1000},
{u'doc_count': 12,
u'key': 999},
{u'doc_count': 7,
u'key': 998},
{u'doc_count': 14,
u'key': 997},
{u'doc_count': 8,
u'key': 996}]}},
'hits': {'hits': [{u'_id': u'1',
u'_score': 1,
u'_source': {u'brand_id': 10,
u'brand_name': u'Brand Ten',
u'categories': [10],
u'price': 197,
u'property': u'Six',
u'title': u'Product Eight One'}},
{u'_id': u'2',
u'_score': 1,
u'_source': {u'brand_id': 6,
u'brand_name': u'Brand Six',
u'categories': [12, 13, 14],
u'price': 671,
u'property': u'Four',
u'title': u'Product Nine Seven'}},
{u'_id': u'3',
u'_score': 1,
u'_source': {u'brand_id': 3,
u'brand_name': u'Brand Three',
u'categories': [13, 14, 15],
u'price': 92,
u'property': u'Six',
u'title': u'Product Five Four'}},
{u'_id': u'4',
u'_score': 1,
u'_source': {u'brand_id': 10,
u'brand_name': u'Brand Ten',
u'categories': [11],
u'price': 713,
u'property': u'Five',
u'title': u'Product Eight Nine'}},
{u'_id': u'5',
u'_score': 1,
u'_source': {u'brand_id': 7,
u'brand_name': u'Brand Seven',
u'categories': [11, 12, 13],
u'price': 805,
u'property': u'Two',
u'title': u'Product Ten Three'}}],
'max_score': None,
'total': 10000},
'profile': None,
'timed_out': False,
'took': 4}
Javascript:
res = await searchApi.search({"index":"facetdemo","query":{"match_all":{}},"limit":5,"aggs":{"group_property":{"terms":{"field":"price",}},"group_brand_id":{"terms":{"field":"brand_id"}}}});
{"took":0,"timed_out":false,"hits":{"total":10000,"hits":[{"_id": 1,"_score":1,"_source":{"price":197,"brand_id":10,"brand_name":"Brand Ten","categories":[10],"title":"Product Eight One","property":"Six"}},{"_id": 2,"_score":1,"_source":{"price":671,"brand_id":6,"brand_name":"Brand Six","categories":[12,13,14],"title":"Product Nine Seven","property":"Four"}},{"_id": 3,"_score":1,"_source":{"price":92,"brand_id":3,"brand_name":"Brand Three","categories":[13,14,15],"title":"Product Five Four","property":"Six"}},{"_id": 4,"_score":1,"_source":{"price":713,"brand_id":10,"brand_name":"Brand Ten","categories":[11],"title":"Product Eight Nine","property":"Five"}},{"_id": 5,"_score":1,"_source":{"price":805,"brand_id":7,"brand_name":"Brand Seven","categories":[11,12,13],"title":"Product Ten Three","property":"Two"}}]}}
Java:
aggs = new HashMap<String,Object>(){{
put("group_property", new HashMap<String,Object>(){{
put("terms", new HashMap<String,Object>(){{
put("field","price");
}});
}});
put("group_brand_id", new HashMap<String,Object>(){{
put("terms", new HashMap<String,Object>(){{
put("field","brand_id");
}});
}});
}};
searchRequest = new SearchRequest();
searchRequest.setIndex("facetdemo");
searchRequest.setLimit(5);
query = new HashMap<String,Object>();
query.put("match_all",null);
searchRequest.setQuery(query);
searchRequest.setAggs(aggs);
searchResponse = searchApi.search(searchRequest);
class SearchResponse {
took: 0
timedOut: false
aggregations: {group_property={buckets=[{key=1000, doc_count=11}, {key=999, doc_count=12}, {key=998, doc_count=7}, {key=997, doc_count=14}, {key=996, doc_count=8}]}, group_brand_id={buckets=[{key=10, doc_count=1019}, {key=9, doc_count=954}, {key=8, doc_count=1021}, {key=7, doc_count=1011}, {key=6, doc_count=997}]}}
hits: class SearchResponseHits {
maxScore: null
total: 10000
hits: [{_id=1, _score=1, _source={price=197, brand_id=10, brand_name=Brand Ten, categories=[10], title=Product Eight One, property=Six}}, {_id=2, _score=1, _source={price=671, brand_id=6, brand_name=Brand Six, categories=[12, 13, 14], title=Product Nine Seven, property=Four}}, {_id=3, _score=1, _source={price=92, brand_id=3, brand_name=Brand Three, categories=[13, 14, 15], title=Product Five Four, property=Six}}, {_id=4, _score=1, _source={price=713, brand_id=10, brand_name=Brand Ten, categories=[11], title=Product Eight Nine, property=Five}}, {_id=5, _score=1, _source={price=805, brand_id=7, brand_name=Brand Seven, categories=[11, 12, 13], title=Product Ten Three, property=Two}}]
}
profile: null
}
C#:
var agg1 = new Aggregation("group_property", "price");
var agg2 = new Aggregation("group_brand_id", "brand_id");
object query = new { match_all=null };
var searchRequest = new SearchRequest("facetdemo", query);
searchRequest.Limit = 5;
searchRequest.Aggs = new List<Aggregation> {agg1, agg2};
var searchResponse = searchApi.Search(searchRequest);
class SearchResponse {
took: 0
timedOut: false
aggregations: {group_property={buckets=[{key=1000, doc_count=11}, {key=999, doc_count=12}, {key=998, doc_count=7}, {key=997, doc_count=14}, {key=996, doc_count=8}]}, group_brand_id={buckets=[{key=10, doc_count=1019}, {key=9, doc_count=954}, {key=8, doc_count=1021}, {key=7, doc_count=1011}, {key=6, doc_count=997}]}}
hits: class SearchResponseHits {
maxScore: null
total: 10000
hits: [{_id=1, _score=1, _source={price=197, brand_id=10, brand_name=Brand Ten, categories=[10], title=Product Eight One, property=Six}}, {_id=2, _score=1, _source={price=671, brand_id=6, brand_name=Brand Six, categories=[12, 13, 14], title=Product Nine Seven, property=Four}}, {_id=3, _score=1, _source={price=92, brand_id=3, brand_name=Brand Three, categories=[13, 14, 15], title=Product Five Four, property=Six}}, {_id=4, _score=1, _source={price=713, brand_id=10, brand_name=Brand Ten, categories=[11], title=Product Eight Nine, property=Five}}, {_id=5, _score=1, _source={price=805, brand_id=7, brand_name=Brand Seven, categories=[11, 12, 13], title=Product Ten Three, property=Two}}]
}
profile: null
}
res = await searchApi.search({
index: 'test',
query: { match_all:{} },
aggs: {
name_group: {
terms: { field : 'name' }
},
cat_group: {
terms: { field: 'cat' }
}
}
});
{
"took": 0,
"timed_out": false,
"hits": {
"total": 5,
"hits": [
{
"_id": 1,
"_score": 1,
"_source": {
"content": "Text 1",
"name": "Doc 1",
"cat": 1
}
},
...
{
"_id": 5,
"_score": 1,
"_source": {
"content": "Text 5",
"name": "Doc 5",
"cat": 4
}
}
]
},
"aggregations": {
"name_group": {
"buckets": [
{
"key": "Doc 1",
"doc_count": 1
},
...
{
"key": "Doc 5",
"doc_count": 1
}
]
},
"cat_group": {
"buckets": [
{
"key": 1,
"doc_count": 2
},
...
{
"key": 4,
"doc_count": 1
}
]
}
}
}
query := map[string]interface{} {}
searchRequest.SetQuery(query)
aggByName := manticoreclient.NewAggregation()
aggTerms := manticoreclient.NewAggregationTerms()
aggTerms.SetField("name")
aggByName.SetTerms(aggTerms)
aggByCat := manticoreclient.NewAggregation()
aggTerms.SetField("cat")
aggByCat.SetTerms(aggTerms)
aggs := map[string]Aggregation{} { "name_group": aggByName, "cat_group": aggByCat }
searchRequest.SetAggs(aggs)
res, _, _ := apiClient.SearchAPI.Search(context.Background()).SearchRequest(*searchRequest).Execute()
{
"took": 0,
"timed_out": false,
"hits": {
"total": 5,
"hits": [
{
"_id": 1,
"_score": 1,
"_source": {
"content": "Text 1",
"name": "Doc 1",
"cat": 1
}
},
...
{
"_id": 5,
"_score": 1,
"_source": {
"content": "Text 5",
"name": "Doc 5",
"cat": 4
}
}
]
},
"aggregations": {
"name_group": {
"buckets": [
{
"key": "Doc 1",
"doc_count": 1
},
...
{
"key": "Doc 5",
"doc_count": 1
}
]
},
"cat_group": {
"buckets": [
{
"key": 1,
"doc_count": 2
},
...
{
"key": 4,
"doc_count": 1
}
]
}
}
}
可以通过对另一个属性或表达式进行聚合来进行分面。例如,如果文档同时包含品牌 ID 和名称,我们可以在分面结果中返回品牌名称,但聚合的是品牌 ID。可以通过使用 FACET {expr1} BY {expr2}
来实现。
SQL:
SELECT * FROM facetdemo FACET brand_name by brand_id;
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| id | price | brand_id | title | brand_name | property | j | categories |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| 1 | 306 | 1 | Product Ten Three | Brand One | Six_Ten | {"prop1":66,"prop2":91,"prop3":"One"} | 10,11 |
| 2 | 400 | 10 | Product Three One | Brand Ten | Four_Three | {"prop1":69,"prop2":19,"prop3":"One"} | 13,14 |
....
| 19 | 855 | 1 | Product Seven Two | Brand One | Eight_Seven | {"prop1":63,"prop2":78,"prop3":"One"} | 10,11,12 |
| 20 | 31 | 9 | Product Four One | Brand Nine | Ten_Four | {"prop1":79,"prop2":42,"prop3":"One"} | 12,13,14 |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
20 rows in set (0.00 sec)
+-------------+----------+
| brand_name | count(*) |
+-------------+----------+
| Brand One | 1013 |
| Brand Ten | 998 |
| Brand Five | 1007 |
| Brand Nine | 944 |
| Brand Two | 990 |
| Brand Six | 1039 |
| Brand Three | 1016 |
| Brand Four | 994 |
| Brand Eight | 1033 |
| Brand Seven | 965 |
+-------------+----------+
10 rows in set (0.00 sec)
如果需要从 FACET
返回的桶中移除重复项,可以使用 DISTINCT field_name
,其中 field_name
是你想要进行去重的字段。如果你在对分布式表进行 FACET 查询且不确定表中的 ID 是否唯一(表应是本地的并且具有相同的架构),它也可以是 id
(这是默认值)。
如果在查询中有多个 FACET 声明,field_name
应该在所有声明中保持一致。
DISTINCT
会在 count(*)
列之前返回一个额外的列 count(distinct ...)
,这样你可以在不需要另一个查询的情况下获取两种结果。
SQL:
SELECT brand_name, property FROM facetdemo FACET brand_name distinct property;
+-------------+----------+
| brand_name | property |
+-------------+----------+
| Brand Nine | Four |
| Brand Ten | Four |
| Brand One | Five |
| Brand Seven | Nine |
| Brand Seven | Seven |
| Brand Three | Seven |
| Brand Nine | Five |
| Brand Three | Eight |
| Brand Two | Eight |
| Brand Six | Eight |
| Brand Ten | Four |
| Brand Ten | Two |
| Brand Four | Ten |
| Brand One | Nine |
| Brand Four | Eight |
| Brand Nine | Seven |
| Brand Four | Five |
| Brand Three | Four |
| Brand Four | Two |
| Brand Four | Eight |
+-------------+----------+
20 rows in set (0.00 sec)
+-------------+--------------------------+----------+
| brand_name | count(distinct property) | count(*) |
+-------------+--------------------------+----------+
| Brand Nine | 3 | 3 |
| Brand Ten | 2 | 3 |
| Brand One | 2 | 2 |
| Brand Seven | 2 | 2 |
| Brand Three | 3 | 3 |
| Brand Two | 1 | 1 |
| Brand Six | 1 | 1 |
| Brand Four | 4 | 5 |
+-------------+--------------------------+----------+
8 rows in set (0.00 sec)
分面可以聚合表达式。一个经典的例子是通过特定的范围对价格进行分段:
SELECT * FROM facetdemo FACET INTERVAL(price,200,400,600,800) AS price_range ;
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+-------------+
| id | price | brand_id | title | brand_name | property | j | categories | price_range |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+-------------+
| 1 | 306 | 1 | Product Ten Three | Brand One | Six_Ten | {"prop1":66,"prop2":91,"prop3":"One"} | 10,11 | 1 |
...
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+-------------+
20 rows in set (0.00 sec)
+-------------+----------+
| price_range | count(*) |
+-------------+----------+
| 0 | 1885 |
| 3 | 1973 |
| 4 | 2100 |
| 2 | 1999 |
| 1 | 2043 |
+-------------+----------+
5 rows in set (0.01 sec)
POST /search -d '
{
"index": "facetdemo",
"query":
{
"match_all": {}
},
"expressions":
{
"price_range": "INTERVAL(price,200,400,600,800)"
},
"aggs":
{
"group_property":
{
"terms":
{
"field": "price_range"
}
}
}
}
{
"took": 3,
"timed_out": false,
"hits": {
"total": 10000,
"hits": [
{
"_id": 1,
"_score": 1,
"_source": {
"price": 197,
"brand_id": 10,
"brand_name": "Brand Ten",
"categories": [
10
],
"price_range": 0
}
},
...
{
"_id": 20,
"_score": 1,
"_source": {
"price": 227,
"brand_id": 3,
"brand_name": "Brand Three",
"categories": [
12,
13
],
"price_range": 1
}
}
]
},
"aggregations": {
"group_property": {
"buckets": [
{
"key": 4,
"doc_count": 2100
},
{
"key": 3,
"doc_count": 1973
},
{
"key": 2,
"doc_count": 1999
},
{
"key": 1,
"doc_count": 2043
},
{
"key": 0,
"doc_count": 1885
}
]
}
}
}
$index->setName('facetdemo');
$search = $index->search('');
$search->limit(5);
$search->expression('price_range','INTERVAL(price,200,400,600,800)');
$search->facet('price_range','group_property');
$results = $search->get();
print_r($results->getFacets());
Array
(
[group_property] => Array
(
[buckets] => Array
(
[0] => Array
(
[key] => 4
[doc_count] => 2100
)
[1] => Array
(
[key] => 3
[doc_count] => 1973
)
[2] => Array
(
[key] => 2
[doc_count] => 1999
)
[3] => Array
(
[key] => 1
[doc_count] => 2043
)
[4] => Array
(
[key] => 0
[doc_count] => 1885
)
)
)
)
res =searchApi.search({"index":"facetdemo","query":{"match_all":{}},"expressions":{"price_range":"INTERVAL(price,200,400,600,800)"},"aggs":{"group_property":{"terms":{"field":"price_range"}}}})
{'aggregations': {u'group_brand_id': {u'buckets': [{u'doc_count': 1019,
u'key': 10},
{u'doc_count': 954,
u'key': 9},
{u'doc_count': 1021,
u'key': 8},
{u'doc_count': 1011,
u'key': 7},
{u'doc_count': 997,
u'key': 6}]},
u'group_property': {u'buckets': [{u'doc_count': 11,
u'key': 1000},
{u'doc_count': 12,
u'key': 999},
{u'doc_count': 7,
u'key': 998},
{u'doc_count': 14,
u'key': 997},
{u'doc_count': 8,
u'key': 996}]}},
'hits': {'hits': [{u'_id': u'1',
u'_score': 1,
u'_source': {u'brand_id': 10,
u'brand_name': u'Brand Ten',
u'categories': [10],
u'price': 197,
u'property': u'Six',
u'title': u'Product Eight One'}},
{u'_id': u'2',
u'_score': 1,
u'_source': {u'brand_id': 6,
u'brand_name': u'Brand Six',
u'categories': [12, 13, 14],
u'price': 671,
u'property': u'Four',
u'title': u'Product Nine Seven'}},
{u'_id': u'3',
u'_score': 1,
u'_source': {u'brand_id': 3,
u'brand_name': u'Brand Three',
u'categories': [13, 14, 15],
u'price': 92,
u'property': u'Six',
u'title': u'Product Five Four'}},
{u'_id': u'4',
u'_score': 1,
u'_source': {u'brand_id': 10,
u'brand_name': u'Brand Ten',
u'categories': [11],
u'price': 713,
u'property': u'Five',
u'title': u'Product Eight Nine'}},
{u'_id': u'5',
u'_score': 1,
u'_source': {u'brand_id': 7,
u'brand_name': u'Brand Seven',
u'categories': [11, 12, 13],
u'price': 805,
u'property': u'Two',
u'title': u'Product Ten Three'}}],
'max_score': None,
'total': 10000},
'profile': None,
'timed_out': False,
'took': 0}
res = await searchApi.search({"index":"facetdemo","query":{"match_all":{}},"expressions":{"price_range":"INTERVAL(price,200,400,600,800)"},"aggs":{"group_property":{"terms":{"field":"price_range"}}}});
{"took":0,"timed_out":false,"hits":{"total":10000,"hits":[{"_id": 1,"_score":1,"_source":{"price":197,"brand_id":10,"brand_name":"Brand Ten","categories":[10],"title":"Product Eight One","property":"Six","price_range":0}},{"_id": 2,"_score":1,"_source":{"price":671,"brand_id":6,"brand_name":"Brand Six","categories":[12,13,14],"title":"Product Nine Seven","property":"Four","price_range":3}},{"_id": 3,"_score":1,"_source":{"price":92,"brand_id":3,"brand_name":"Brand Three","categories":[13,14,15],"title":"Product Five Four","property":"Six","price_range":0}},{"_id": 4,"_score":1,"_source":{"price":713,"brand_id":10,"brand_name":"Brand Ten","categories":[11],"title":"Product Eight Nine","property":"Five","price_range":3}},{"_id": 5,"_score":1,"_source":{"price":805,"brand_id":7,"brand_name":"Brand Seven","categories":[11,12,13],"title":"Product Ten Three","property":"Two","price_range":4}},{"_id": 6,"_score":1,"_source":{"price":420,"brand_id":2,"brand_name":"Brand Two","categories":[10,11],"title":"Product Two One","property":"Six","price_range":2}},{"_id": 7,"_score":1,"_source":{"price":412,"brand_id":9,"brand_name":"Brand Nine","categories":[10],"title":"Product Four Nine","property":"Eight","price_range":2}},{"_id": 8,"_score":1,"_source":{"price":300,"brand_id":9,"brand_name":"Brand Nine","categories":[13,14,15],"title":"Product Eight Four","property":"Five","price_range":1}},{"_id": 9,"_score":1,"_source":{"price":728,"brand_id":1,"brand_name":"Brand One","categories":[11],"title":"Product Nine Six","property":"Four","price_range":3}},{"_id": 10,"_score":1,"_source":{"price":622,"brand_id":3,"brand_name":"Brand Three","categories":[10,11],"title":"Product Six Seven","property":"Two","price_range":3}},{"_id": 11,"_score":1,"_source":{"price":462,"brand_id":5,"brand_name":"Brand Five","categories":[10,11],"title":"Product Ten Two","property":"Eight","price_range":2}},{"_id": 12,"_score":1,"_source":{"price":939,"brand_id":7,"brand_name":"Brand Seven","categories":[12,13],"title":"Product Nine Seven","property":"Six","price_range":4}},{"_id": 13,"_score":1,"_source":{"price":948,"brand_id":8,"brand_name":"Brand Eight","categories":[12],"title":"Product Ten One","property":"Six","price_range":4}},{"_id": 14,"_score":1,"_source":{"price":900,"brand_id":9,"brand_name":"Brand Nine","categories":[12,13,14],"title":"Product Ten Nine","property":"Three","price_range":4}},{"_id": 15,"_score":1,"_source":{"price":224,"brand_id":3,"brand_name":"Brand Three","categories":[13],"title":"Product Two Six","property":"Four","price_range":1}},{"_id": 16,"_score":1,"_source":{"price":713,"brand_id":10,"brand_name":"Brand Ten","categories":[12],"title":"Product Two Four","property":"Six","price_range":3}},{"_id": 17,"_score":1,"_source":{"price":510,"brand_id":2,"brand_name":"Brand Two","categories":[10],"title":"Product Ten Two","property":"Seven","price_range":2}},{"_id": 18,"_score":1,"_source":{"price":702,"brand_id":10,"brand_name":"Brand Ten","categories":[12,13],"title":"Product Nine One","property":"Three","price_range":3}},{"_id": 19,"_score":1,"_source":{"price":836,"brand_id":4,"brand_name":"Brand Four","categories":[10,11,12],"title":"Product Four Five","property":"Two","price_range":4}},{"_id": 20,"_score":1,"_source":{"price":227,"brand_id":3,"brand_name":"Brand Three","categories":[12,13],"title":"Product Three Four","property":"Ten","price_range":1}}]}}
searchRequest = new SearchRequest();
expressions = new HashMap<String,Object>(){{
put("price_range","INTERVAL(price,200,400,600,800)");
}};
searchRequest.setExpressions(expressions);
aggs = new HashMap<String,Object>(){{
put("group_property", new HashMap<String,Object>(){{
put("terms", new HashMap<String,Object>(){{
put("field","price_range");
}});
}});
}};
searchRequest.setIndex("facetdemo");
searchRequest.setLimit(5);
query = new HashMap<String,Object>();
query.put("match_all",null);
searchRequest.setQuery(query);
searchRequest.setAggs(aggs);
searchResponse = searchApi.search(searchRequest);
class SearchResponse {
took: 0
timedOut: false
aggregations: {group_property={buckets=[{key=4, doc_count=2100}, {key=3, doc_count=1973}, {key=2, doc_count=1999}, {key=1, doc_count=2043}, {key=0, doc_count=1885}]}}
hits: class SearchResponseHits {
maxScore: null
total: 10000
hits: [{_id=1, _score=1, _source={price=197, brand_id=10, brand_name=Brand Ten, categories=[10], title=Product Eight One, property=Six, price_range=0}}, {_id=2, _score=1, _source={price=671, brand_id=6, brand_name=Brand Six, categories=[12, 13, 14], title=Product Nine Seven, property=Four, price_range=3}}, {_id=3, _score=1, _source={price=92, brand_id=3, brand_name=Brand Three, categories=[13, 14, 15], title=Product Five Four, property=Six, price_range=0}}, {_id=4, _score=1, _source={price=713, brand_id=10, brand_name=Brand Ten, categories=[11], title=Product Eight Nine, property=Five, price_range=3}}, {_id=5, _score=1, _source={price=805, brand_id=7, brand_name=Brand Seven, categories=[11, 12, 13], title=Product Ten Three, property=Two, price_range=4}}]
}
profile: null
}
var expr = new Dictionary<string, string> { {"price_range", "INTERVAL(price,200,400,600,800"} } ;
var agg = new Aggregation("group_property", "price_range");
object query = new { match_all=null };
var searchRequest = new SearchRequest("facetdemo", query);
searchRequest.Limit = 5;
searchRequest.Expressions = new List<Object> {expr};
searchRequest.Aggs = new List<Aggregation> {agg};
var searchResponse = searchApi.Search(searchRequest);
class SearchResponse {
took: 0
timedOut: false
aggregations: {group_property={buckets=[{key=4, doc_count=2100}, {key=3, doc_count=1973}, {key=2, doc_count=1999}, {key=1, doc_count=2043}, {key=0, doc_count=1885}]}}
hits: class SearchResponseHits {
maxScore: null
total: 10000
hits: [{_id=1, _score=1, _source={price=197, brand_id=10, brand_name=Brand Ten, categories=[10], title=Product Eight One, property=Six, price_range=0}}, {_id=2, _score=1, _source={price=671, brand_id=6, brand_name=Brand Six, categories=[12, 13, 14], title=Product Nine Seven, property=Four, price_range=3}}, {_id=3, _score=1, _source={price=92, brand_id=3, brand_name=Brand Three, categories=[13, 14, 15], title=Product Five Four, property=Six, price_range=0}}, {_id=4, _score=1, _source={price=713, brand_id=10, brand_name=Brand Ten, categories=[11], title=Product Eight Nine, property=Five, price_range=3}}, {_id=5, _score=1, _source={price=805, brand_id=7, brand_name=Brand Seven, categories=[11, 12, 13], title=Product Ten Three, property=Two, price_range=4}}]
}
profile: null
}
res = await searchApi.search({
index: 'test',
query: { match_all:{} },
expressions: { cat_range: "INTERVAL(cat,1,3)" }
aggs: {
expr_group: {
terms: { field : 'cat_range' }
}
}
});
{
"took": 0,
"timed_out": false,
"hits": {
"total": 5,
"hits": [
{
"_id": 1,
"_score": 1,
"_source": {
"content": "Text 1",
"name": "Doc 1",
"cat": 1,
"cat_range": 1
}
},
...
{
"_id": 5,
"_score": 1,
"_source": {
"content": "Text 5",
"name": "Doc 5",
"cat": 4,
"cat_range": 2,
}
}
]
},
"aggregations": {
"expr_group": {
"buckets": [
{
"key": 0,
"doc_count": 0
},
{
"key": 1,
"doc_count": 3
},
{
"key": 2,
"doc_count": 2
}
]
}
}
}
query := map[string]interface{} {}
searchRequest.SetQuery(query)
exprs := map[string]string{} { "cat_range": "INTERVAL(cat,1,3)" }
searchRequest.SetExpressions(exprs)
aggByExpr := manticoreclient.NewAggregation()
aggTerms := manticoreclient.NewAggregationTerms()
aggTerms.SetField("cat_range")
aggByExpr.SetTerms(aggTerms)
aggs := map[string]Aggregation{} { "expr_group": aggByExpr }
searchRequest.SetAggs(aggs)
res, _, _ := apiClient.SearchAPI.Search(context.Background()).SearchRequest(*searchRequest).Execute()
{
"took": 0,
"timed_out": false,
"hits": {
"total": 5,
"hits": [
{
"_id": 1,
"_score": 1,
"_source": {
"content": "Text 1",
"name": "Doc 1",
"cat": 1,
"cat_range": 1
}
},
...
{
"_id": 5,
"_score": 1,
"_source": {
"content": "Text 5",
"name": "Doc 5",
"cat": 4,
"cat_range": 2
}
}
]
},
"aggregations": {
"expr_group": {
"buckets": [
{
"key": 0,
"doc_count": 0
},
{
"key": 1,
"doc_count": 3
},
{
"key": 2,
"doc_count": 2
}
]
}
}
}
分面可以在多级分组上进行聚合,其结果集与执行多级分组查询时的结果相同:
SELECT *,INTERVAL(price,200,400,600,800) AS price_range FROM facetdemo
FACET price_range AS price_range,brand_name ORDER BY brand_name asc;
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+-------------+
| id | price | brand_id | title | brand_name | property | j | categories | price_range |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+-------------+
| 1 | 306 | 1 | Product Ten Three | Brand One | Six_Ten | {"prop1":66,"prop2":91,"prop3":"One"} | 10,11 | 1 |
...
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+-------------+
20 rows in set (0.00 sec)
+--------------+-------------+----------+
| fprice_range | brand_name | count(*) |
+--------------+-------------+----------+
| 1 | Brand Eight | 197 |
| 4 | Brand Eight | 235 |
| 3 | Brand Eight | 203 |
| 2 | Brand Eight | 201 |
| 0 | Brand Eight | 197 |
| 4 | Brand Five | 230 |
| 2 | Brand Five | 197 |
| 1 | Brand Five | 204 |
| 3 | Brand Five | 193 |
| 0 | Brand Five | 183 |
| 1 | Brand Four | 195 |
...
分面可以通过构造固定大小的区间来对直方图值进行聚合。关键函数为:
key_of_the_bucket = interval + offset * floor ( ( value - offset ) / interval )
直方图参数 interval
必须为正数,参数 offset
必须为正数且小于 interval
。默认情况下,区间以数组形式返回。使用 keyed
参数可以使响应变为一个包含区间键的字典。
SELECT COUNT(*), HISTOGRAM(price, {hist_interval=100}) as price_range FROM facets GROUP BY price_range ORDER BY price_range ASC;
+----------+-------------+
| count(*) | price_range |
+----------+-------------+
| 5 | 0 |
| 5 | 100 |
| 1 | 300 |
| 4 | 400 |
| 1 | 500 |
| 3 | 700 |
| 1 | 900 |
+----------+-------------+
POST /search -d '
{
"size": 0,
"index": "facets",
"aggs": {
"price_range": {
"histogram": {
"field": "price",
"interval": 300
}
}
}
}'
{
"took": 0,
"timed_out": false,
"hits": {
"total": 20,
"total_relation": "eq",
"hits": []
},
"aggregations": {
"price_range": {
"buckets": [
{
"key": 0,
"doc_count": 10
},
{
"key": 300,
"doc_count": 6
},
{
"key": 600,
"doc_count": 3
},
{
"key": 900,
"doc_count": 1
}
]
}
}
}
POST /search -d '
{
"size": 0,
"index": "facets",
"aggs": {
"price_range": {
"histogram": {
"field": "price",
"interval": 300,
"keyed": true
}
}
}
}'
{
"took": 0,
"timed_out": false,
"hits": {
"total": 20,
"total_relation": "eq",
"hits": []
},
"aggregations": {
"price_range": {
"buckets": {
"0": {
"key": 0,
"doc_count": 10
},
"300": {
"key": 300,
"doc_count": 6
},
"600": {
"key": 600,
"doc_count": 3
},
"900": {
"key": 900,
"doc_count": 1
}
}
}
}
}
分面可以对日期值直方图进行聚合,类似于普通直方图。区别在于间隔是使用日期或时间表达式指定的。这类表达式需要特殊支持,因为时间间隔不总是固定长度的。值将通过以下键函数四舍五入到最近的区间:
key_of_the_bucket = interval * floor ( value / interval )
直方图参数 calendar_interval
能够理解不同月份的天数不同。可接受的时间间隔描述在 date_histogram 表达式中。默认情况下,区间以数组形式返回。使用 keyed
参数可以使响应变为一个包含区间键的字典。
SELECT count(*), DATE_HISTOGRAM(tm, {calendar_interval='month'}) AS months FROM idx_dates GROUP BY months ORDER BY months ASC
+----------+------------+
| count(*) | months |
+----------+------------+
| 442 | 1485907200 |
| 744 | 1488326400 |
| 720 | 1491004800 |
| 230 | 1493596800 |
+----------+------------+
POST /search -d '
{
"index": "idx_dates",
"size": 0,
"aggs": {
"months": {
"date_histogram": {
"field": "tm",
"keyed": true,
"calendar_interval": "month"
}
}
}
}'
{
"timed_out": false,
"hits": {
"total": 2136,
"total_relation": "eq",
"hits": []
},
"aggregations": {
"months": {
"buckets": {
"2017-02-01T00:00:00": {
"key": 1485907200,
"key_as_string": "2017-02-01T00:00:00",
"doc_count": 442
},
"2017-03-01T00:00:00": {
"key": 1488326400,
"key_as_string": "2017-03-01T00:00:00",
"doc_count": 744
},
"2017-04-01T00:00:00": {
"key": 1491004800,
"key_as_string": "2017-04-01T00:00:00",
"doc_count": 720
},
"2017-05-01T00:00:00": {
"key": 1493596800,
"key_as_string": "2017-05-01T00:00:00",
"doc_count": 230
}
}
}
}
}
分面可以对一组范围进行聚合。值将根据区间范围进行检查,每个区间包括 from
值,但排除 to
值。 将 keyed
属性设置为 true
时,响应将变为一个包含区间键的字典,而不是数组。
SELECT COUNT(*), RANGE(price, {range_to=150},{range_from=150,range_to=300},{range_from=300}) price_range FROM facets GROUP BY price_range ORDER BY price_range ASC;
+----------+-------------+
| count(*) | price_range |
+----------+-------------+
| 8 | 0 |
| 2 | 1 |
| 10 | 2 |
+----------+-------------+
POST /search -d '
{
"size": 0,
"index": "facets",
"aggs": {
"price_range": {
"range": {
"field": "price",
"ranges": [
{
"to": 99
},
{
"from": 99,
"to": 550
},
{
"from": 550
}
]
}
}
}
}'
{
"took": 0,
"timed_out": false,
"hits": {
"total": 20,
"total_relation": "eq",
"hits": []
},
"aggregations": {
"price_range": {
"buckets": [
{
"key": "*-99",
"to": 99,
"doc_count": 5
},
{
"key": "99-550",
"from": 99,
"to": 550,
"doc_count": 11
},
{
"key": "550-*",
"from": 550,
"doc_count": 4
}
]
}
}
}
POST /search -d '
{
"size":0,
"index":"facets",
"aggs":{
"price_range":{
"range":{
"field":"price",
"keyed":true,
"ranges":[
{
"from":100,
"to":399
},
{
"from":399
}
]
}
}
}
}'
{
"took": 0,
"timed_out": false,
"hits": {
"total": 20,
"total_relation": "eq",
"hits": []
},
"aggregations": {
"price_range": {
"buckets": {
"100-399": {
"from": 100,
"to": 399,
"doc_count": 6
},
"399-*": {
"from": 399,
"doc_count": 9
}
}
}
}
}
分面可以对一组日期范围进行聚合,类似于普通的范围聚合。不同之处在于,from
和 to
值可以使用 日期运算 表达式来表示。此聚合包括每个范围的 from
值,排除 to
值。将 keyed
属性设置为 true
时,响应将变为一个包含区间键的字典,而不是数组。
SELECT COUNT(*), DATE_RANGE(tm, {range_to='2017||+2M/M'},{range_from='2017||+2M/M',range_to='2017||+5M/M'},{range_from='2017||+5M/M'}) AS points FROM idx_dates GROUP BY points ORDER BY points ASC;
+----------+--------+
| count(*) | points |
+----------+--------+
| 442 | 0 |
| 1464 | 1 |
| 230 | 2 |
+----------+--------+
POST /search -d '
{
"index": "idx_dates",
"size": 0,
"aggs": {
"points": {
"date_range": {
"field": "tm",
"keyed": true,
"ranges": [
{
"to": "2017||+2M/M"
},
{
"from": "2017||+2M/M",
"to": "2017||+4M/M"
},
{
"from": "2017||+4M/M",
"to": "2017||+5M/M"
},
{
"from": "2017||+5M/M"
}
]
}
}
}
}'
{
"timed_out": false,
"hits": {
"total": 2136,
"total_relation": "eq",
"hits": []
},
"aggregations": {
"points": {
"buckets": {
"*-2017-03-01T00:00:00": {
"to": "2017-03-01T00:00:00",
"doc_count": 442
},
"2017-03-01T00:00:00-2017-04-01T00:00:00": {
"from": "2017-03-01T00:00:00",
"to": "2017-04-01T00:00:00",
"doc_count": 744
},
"2017-04-01T00:00:00-2017-05-01T00:00:00": {
"from": "2017-04-01T00:00:00",
"to": "2017-05-01T00:00:00",
"doc_count": 720
},
"2017-05-01T00:00:00-*": {
"from": "2017-05-01T00:00:00",
"doc_count": 230
}
}
}
}
}
分面支持类似于标准查询的 ORDER BY
子句。每个分面可以有自己的排序,分面的排序不会影响主结果集的排序,主结果集的排序由主查询的 ORDER BY
确定。排序可以基于属性名称、计数(使用 COUNT(*)
),或者使用特殊的 FACET()
函数,该函数提供聚合后的数据值。默认情况下,带有 ORDER BY COUNT(*)
的查询将按降序排列。
SQL:
SELECT * FROM facetdemo
FACET brand_name BY brand_id ORDER BY FACET() ASC
FACET brand_name BY brand_id ORDER BY brand_name ASC
FACET brand_name BY brand_id order BY COUNT(*) DESC;
FACET brand_name BY brand_id order BY COUNT(*);
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| id | price | brand_id | title | brand_name | property | j | categories |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| 1 | 306 | 1 | Product Ten Three | Brand One | Six_Ten | {"prop1":66,"prop2":91,"prop3":"One"} | 10,11 |
...
| 20 | 31 | 9 | Product Four One | Brand Nine | Ten_Four | {"prop1":79,"prop2":42,"prop3":"One"} | 12,13,14 |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
20 rows in set (0.01 sec)
+-------------+----------+
| brand_name | count(*) |
+-------------+----------+
| Brand One | 1013 |
| Brand Two | 990 |
| Brand Three | 1016 |
| Brand Four | 994 |
| Brand Five | 1007 |
| Brand Six | 1039 |
| Brand Seven | 965 |
| Brand Eight | 1033 |
| Brand Nine | 944 |
| Brand Ten | 998 |
+-------------+----------+
10 rows in set (0.01 sec)
+-------------+----------+
| brand_name | count(*) |
+-------------+----------+
| Brand Eight | 1033 |
| Brand Five | 1007 |
| Brand Four | 994 |
| Brand Nine | 944 |
| Brand One | 1013 |
| Brand Seven | 965 |
| Brand Six | 1039 |
| Brand Ten | 998 |
| Brand Three | 1016 |
| Brand Two | 990 |
+-------------+----------+
10 rows in set (0.01 sec)
+-------------+----------+
| brand_name | count(*) |
+-------------+----------+
| Brand Six | 1039 |
| Brand Eight | 1033 |
| Brand Three | 1016 |
| Brand One | 1013 |
| Brand Five | 1007 |
| Brand Ten | 998 |
| Brand Four | 994 |
| Brand Two | 990 |
| Brand Seven | 965 |
| Brand Nine | 944 |
+-------------+----------+
10 rows in set (0.01 sec)
JSON:
POST /search -d '
{
"index":"table_name",
"aggs":{
"group_property":{
"terms":{
"field":"a"
},
"sort":[
{
"count(*)":{
"order":"desc"
}
}
]
}
}
}'
{
"took": 0,
"timed_out": false,
"hits": {
"total": 6,
"total_relation": "eq",
"hits": [
{
"_id": 1515697460415037554,
"_score": 1,
"_source": {
"a": 1
}
},
{
"_id": 1515697460415037555,
"_score": 1,
"_source": {
"a": 2
}
},
{
"_id": 1515697460415037556,
"_score": 1,
"_source": {
"a": 2
}
},
{
"_id": 1515697460415037557,
"_score": 1,
"_source": {
"a": 3
}
},
{
"_id": 1515697460415037558,
"_score": 1,
"_source": {
"a": 3
}
},
{
"_id": 1515697460415037559,
"_score": 1,
"_source": {
"a": 3
}
}
]
},
"aggregations": {
"group_property": {
"buckets": [
{
"key": 3,
"doc_count": 3
},
{
"key": 2,
"doc_count": 2
},
{
"key": 1,
"doc_count": 1
}
]
}
}
}
默认情况下,每个分面结果集限制为 20 个值。可以通过 LIMIT
子句单独控制每个分面的分面值数量,格式可以是 LIMIT count
返回一定数量的值,或使用偏移量格式 LIMIT offset, count
。
最大可返回的分面值数量受查询的 max_matches
设置限制。如果你想实现动态的 max_matches
(将 max_matches
限制为偏移量 + 每页数量以提高性能),需要注意的是,过低的 max_matches
值可能会影响分面值的数量。在这种情况下,应使用足够覆盖分面值数量的最小 max_matches
值。
SQL:
SELECT * FROM facetdemo
FACET brand_name BY brand_id ORDER BY FACET() ASC LIMIT 0,1
FACET brand_name BY brand_id ORDER BY brand_name ASC LIMIT 2,4
FACET brand_name BY brand_id order BY COUNT(*) DESC LIMIT 4;
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| id | price | brand_id | title | brand_name | property | j | categories |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| 1 | 306 | 1 | Product Ten Three | Brand One | Six_Ten | {"prop1":66,"prop2":91,"prop3":"One"} | 10,11 |
...
| 20 | 31 | 9 | Product Four One | Brand Nine | Ten_Four | {"prop1":79,"prop2":42,"prop3":"One"} | 12,13,14 |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
20 rows in set (0.01 sec)
+-------------+----------+
| brand_name | count(*) |
+-------------+----------+
| Brand One | 1013 |
+-------------+----------+
1 rows in set (0.01 sec)
+-------------+----------+
| brand_name | count(*) |
+-------------+----------+
| Brand Four | 994 |
| Brand Nine | 944 |
| Brand One | 1013 |
| Brand Seven | 965 |
+-------------+----------+
4 rows in set (0.01 sec)
+-------------+----------+
| brand_name | count(*) |
+-------------+----------+
| Brand Six | 1039 |
| Brand Eight | 1033 |
| Brand Three | 1016 |
+-------------+----------+
3 rows in set (0.01 sec)
POST /search -d '
{
"index" : "facetdemo",
"query" : {"match_all" : {} },
"limit": 5,
"aggs" :
{
"group_property" :
{
"terms" :
{
"field":"price",
"size":1,
}
},
"group_brand_id" :
{
"terms" :
{
"field":"brand_id",
"size":3
}
}
}
}
'
{
"took": 3,
"timed_out": false,
"hits": {
"total": 10000,
"hits": [
{
"_id": 1,
"_score": 1,
"_source": {
"price": 197,
"brand_id": 10,
"brand_name": "Brand Ten",
"categories": [
10
]
}
},
...
{
"_id": 5,
"_score": 1,
"_source": {
"price": 805,
"brand_id": 7,
"brand_name": "Brand Seven",
"categories": [
11,
12,
13
]
}
}
]
},
"aggregations": {
"group_property": {
"buckets": [
{
"key": 1000,
"doc_count": 11
}
]
},
"group_brand_id": {
"buckets": [
{
"key": 10,
"doc_count": 1019
},
{
"key": 9,
"doc_count": 954
},
{
"key": 8,
"doc_count": 1021
}
]
}
}
}
$index->setName('facetdemo');
$search = $index->search('');
$search->limit(5);
$search->facet('price','price',1);
$search->facet('brand_id','group_brand_id',3);
$results = $search->get();
print_r($results->getFacets());
Array
(
[price] => Array
(
[buckets] => Array
(
[0] => Array
(
[key] => 1000
[doc_count] => 11
)
)
)
[group_brand_id] => Array
(
[buckets] => Array
(
[0] => Array
(
[key] => 10
[doc_count] => 1019
)
[1] => Array
(
[key] => 9
[doc_count] => 954
)
[2] => Array
(
[key] => 8
[doc_count] => 1021
)
)
)
)
res =searchApi.search({"index":"facetdemo","query":{"match_all":{}},"limit":5,"aggs":{"group_property":{"terms":{"field":"price","size":1,}},"group_brand_id":{"terms":{"field":"brand_id","size":3}}}})
{'aggregations': {u'group_brand_id': {u'buckets': [{u'doc_count': 1019,
u'key': 10},
{u'doc_count': 954,
u'key': 9},
{u'doc_count': 1021,
u'key': 8}]},
u'group_property': {u'buckets': [{u'doc_count': 11,
u'key': 1000}]}},
'hits': {'hits': [{u'_id': u'1',
u'_score': 1,
u'_source': {u'brand_id': 10,
u'brand_name': u'Brand Ten',
u'categories': [10],
u'price': 197,
u'property': u'Six',
u'title': u'Product Eight One'}},
{u'_id': u'2',
u'_score': 1,
u'_source': {u'brand_id': 6,
u'brand_name': u'Brand Six',
u'categories': [12, 13, 14],
u'price': 671,
u'property': u'Four',
u'title': u'Product Nine Seven'}},
{u'_id': u'3',
u'_score': 1,
u'_source': {u'brand_id': 3,
u'brand_name': u'Brand Three',
u'categories': [13, 14, 15],
u'price': 92,
u'property': u'Six',
u'title': u'Product Five Four'}},
{u'_id': u'4',
u'_score': 1,
u'_source': {u'brand_id': 10,
u'brand_name': u'Brand Ten',
u'categories': [11],
u'price': 713,
u'property': u'Five',
u'title': u'Product Eight Nine'}},
{u'_id': u'5',
u'_score': 1,
u'_source': {u'brand_id': 7,
u'brand_name': u'Brand Seven',
u'categories': [11, 12, 13],
u'price': 805,
u'property': u'Two',
u'title': u'Product Ten Three'}}],
'max_score': None,
'total': 10000},
'profile': None,
'timed_out': False,
'took': 0}
res = await searchApi.search({"index":"facetdemo","query":{"match_all":{}},"limit":5,"aggs":{"group_property":{"terms":{"field":"price","size":1,}},"group_brand_id":{"terms":{"field":"brand_id","size":3}}}});
{"took":0,"timed_out":false,"hits":{"total":10000,"hits":[{"_id": 1,"_score":1,"_source":{"price":197,"brand_id":10,"brand_name":"Brand Ten","categories":[10],"title":"Product Eight One","property":"Six"}},{"_id": 2,"_score":1,"_source":{"price":671,"brand_id":6,"brand_name":"Brand Six","categories":[12,13,14],"title":"Product Nine Seven","property":"Four"}},{"_id": 3,"_score":1,"_source":{"price":92,"brand_id":3,"brand_name":"Brand Three","categories":[13,14,15],"title":"Product Five Four","property":"Six"}},{"_id": 4,"_score":1,"_source":{"price":713,"brand_id":10,"brand_name":"Brand Ten","categories":[11],"title":"Product Eight Nine","property":"Five"}},{"_id": 5,"_score":1,"_source":{"price":805,"brand_id":7,"brand_name":"Brand Seven","categories":[11,12,13],"title":"Product Ten Three","property":"Two"}}]}}
searchRequest = new SearchRequest();
aggs = new HashMap<String,Object>(){{
put("group_property", new HashMap<String,Object>(){{
put("terms", new HashMap<String,Object>(){{
put("field","price");
put("size",1);
}});
}});
put("group_brand_id", new HashMap<String,Object>(){{
put("terms", new HashMap<String,Object>(){{
put("field","brand_id");
put("size",3);
}});
}});
}};
searchRequest.setIndex("facetdemo");
searchRequest.setLimit(5);
query = new HashMap<String,Object>();
query.put("match_all",null);
searchRequest.setQuery(query);
searchRequest.setAggs(aggs);
searchResponse = searchApi.search(searchRequest);
class SearchResponse {
took: 0
timedOut: false
aggregations: {group_property={buckets=[{key=1000, doc_count=11}]}, group_brand_id={buckets=[{key=10, doc_count=1019}, {key=9, doc_count=954}, {key=8, doc_count=1021}]}}
hits: class SearchResponseHits {
maxScore: null
total: 10000
hits: [{_id=1, _score=1, _source={price=197, brand_id=10, brand_name=Brand Ten, categories=[10], title=Product Eight One, property=Six}}, {_id=2, _score=1, _source={price=671, brand_id=6, brand_name=Brand Six, categories=[12, 13, 14], title=Product Nine Seven, property=Four}}, {_id=3, _score=1, _source={price=92, brand_id=3, brand_name=Brand Three, categories=[13, 14, 15], title=Product Five Four, property=Six}}, {_id=4, _score=1, _source={price=713, brand_id=10, brand_name=Brand Ten, categories=[11], title=Product Eight Nine, property=Five}}, {_id=5, _score=1, _source={price=805, brand_id=7, brand_name=Brand Seven, categories=[11, 12, 13], title=Product Ten Three, property=Two}}]
}
profile: null
}
var agg1 = new Aggregation("group_property", "price");
agg1.Size = 1;
var agg2 = new Aggregation("group_brand_id", "brand_id");
agg2.Size = 3;
agg2.Size = 100;
object query = new { match_all=null };
var searchRequest = new SearchRequest("facetdemo", query);
searchRequest.Aggs = new List<Aggregation> {agg1, agg2};
var searchResponse = searchApi.Search(searchRequest);
class SearchResponse {
took: 0
timedOut: false
aggregations: {group_property={buckets=[{key=1000, doc_count=11}]}, group_brand_id={buckets=[{key=10, doc_count=1019}, {key=9, doc_count=954}, {key=8, doc_count=1021}]}}
hits: class SearchResponseHits {
maxScore: null
total: 10000
hits: [{_id=1, _score=1, _source={price=197, brand_id=10, brand_name=Brand Ten, categories=[10], title=Product Eight One, property=Six}}, {_id=2, _score=1, _source={price=671, brand_id=6, brand_name=Brand Six, categories=[12, 13, 14], title=Product Nine Seven, property=Four}}, {_id=3, _score=1, _source={price=92, brand_id=3, brand_name=Brand Three, categories=[13, 14, 15], title=Product Five Four, property=Six}}, {_id=4, _score=1, _source={price=713, brand_id=10, brand_name=Brand Ten, categories=[11], title=Product Eight Nine, property=Five}}, {_id=5, _score=1, _source={price=805, brand_id=7, brand_name=Brand Seven, categories=[11, 12, 13], title=Product Ten Three, property=Two}}]
}
profile: null
}
res = await searchApi.search({
index: 'test',
query: { match_all:{} },
aggs: {
name_group: {
terms: { field : 'name', size: 1 }
},
cat_group: {
terms: { field: 'cat' }
}
}
});
{
"took": 0,
"timed_out": false,
"hits": {
"total": 5,
"hits": [
{
"_id": 1,
"_score": 1,
"_source": {
"content": "Text 1",
"name": "Doc 1",
"cat": 1
}
},
...
{
"_id": 5,
"_score": 1,
"_source": {
"content": "Text 5",
"name": "Doc 5",
"cat": 4
}
}
]
},
"aggregations": {
"name_group": {
"buckets": [
{
"key": "Doc 1",
"doc_count": 1
}
]
},
"cat_group": {
"buckets": [
{
"key": 1,
"doc_count": 2
},
...
{
"key": 4,
"doc_count": 1
}
]
}
}
}
query := map[string]interface{} {}
searchRequest.SetQuery(query)
aggByName := manticoreclient.NewAggregation()
aggTerms := manticoreclient.NewAggregationTerms()
aggTerms.SetField("name")
aggByName.SetTerms(aggTerms)
aggByName.SetSize(1)
aggByCat := manticoreclient.NewAggregation()
aggTerms.SetField("cat")
aggByCat.SetTerms(aggTerms)
aggs := map[string]Aggregation{} { "name_group": aggByName, "cat_group": aggByCat }
searchRequest.SetAggs(aggs)
res, _, _ := apiClient.SearchAPI.Search(context.Background()).SearchRequest(*searchRequest).Execute()
{
"took": 0,
"timed_out": false,
"hits": {
"total": 5,
"hits": [
{
"_id": 1,
"_score": 1,
"_source": {
"content": "Text 1",
"name": "Doc 1",
"cat": 1
}
},
...
{
"_id": 5,
"_score": 1,
"_source": {
"content": "Text 5",
"name": "Doc 5",
"cat": 4
}
}
]
},
"aggregations": {
"name_group": {
"buckets": [
{
"key": "Doc 1",
"doc_count": 1
}
]
},
"cat_group": {
"buckets": [
{
"key": 1,
"doc_count": 2
},
...
{
"key": 4,
"doc_count": 1
}
]
}
}
}
使用 SQL 进行带分面的搜索时,会返回多个结果集。所使用的 MySQL 客户端/库/连接器 必须 支持多个结果集,才能访问分面结果集。
在内部,FACET
是执行多查询的简写,其中第一个查询包含主要的搜索查询,批次中的其余查询则分别进行聚类。与多查询情况类似,分面搜索的查询优化可以生效,意味着搜索查询只执行一次,分面基于搜索查询结果进行操作,每个分面仅增加一小部分时间到总查询时间。
要检查分面搜索是否以优化模式运行,可以查看 查询日志,所有已记录的查询中都会包含一个 xN
字符串,其中 N
是在优化组中运行的查询数量。或者,你可以检查 SHOW META 语句的输出,其中会显示一个 multiplier
指标:
SELECT * FROM facetdemo FACET brand_id FACET price FACET categories;
SHOW META LIKE 'multiplier';
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| id | price | brand_id | title | brand_name | property | j | categories |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| 1 | 306 | 1 | Product Ten Three | Brand One | Six_Ten | {"prop1":66,"prop2":91,"prop3":"One"} | 10,11 |
...
+----------+----------+
| brand_id | count(*) |
+----------+----------+
| 1 | 1013 |
...
+-------+----------+
| price | count(*) |
+-------+----------+
| 306 | 7 |
...
+------------+----------+
| categories | count(*) |
+------------+----------+
| 10 | 2436 |
...
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| multiplier | 4 |
+---------------+-------+
1 row in set (0.00 sec)